CRAVE Science Goals

- Investigate the TTL ozone budget
- Investigate the TTL water vapor budget
- Investigate convective and large-scale transport of water vapor and other trace gases in the UT/LS region
- Investigate the properties of high anvil cirrus and in situ TTL cirrus
- Measure UT/LS concentrations of short-lived halogen species
- Investigate UT/LS aerosol composition and TTL NAT particles

Specific Flight Objectives

- Survey TTL air with a variety of regional origins and convective influence histories
- Sample very cold TTL air
- Measure water vapor and total water isotopes in the UT/LS region
- Sample air that has recently experienced very cold temperatures in the western Pacific
- Sample air recently influenced by deep tropical convection
- Sample the tops of high tropical anvil cirrus
- Sample thin cirrus formed in situ in the TTL

Aura Validation Priorities

TES

- scanning HIS coincident with ozonesondes, contrasting geophysical conditions
- two flights with clear-sky, over-ocean coincidence between S-HIS and TES (level flight along TES track required for comparisons with S-HIS, CAFS, and CPL)
- 8 km to max alt HNO₃ profiles
- cloud-free (at and above a/c) profiles down to 500 mbar
- HDO measurements at 500 mbar

OMI

- long, level tropopause legs: clean air over ocean and polluted air downwind of cities
- spatial variability of NO₂ column (ACAM)
- atmospheric pollution measurements: NO₂, SO₂, aerosols, HCHO
- spirals into BL under pristine and polluted conditions

Aura Validation Priorities continued

HIRDLS

- coincident species profiles (10 km to max alt, clear LOS)
- long legs with CPL measurements over clouds
- tropopause H2O measurements under very dry, cold conditions
- HIRDLS coincidence with H2O and O₃ sondes

MLS

- coincident COSSIR and CRS IWP and IWC measurements
- in situ measurements of IWC and size distribution in thick cirrus
- o H₂O: profiles from 50 to 500 hPa coincident with frostpoint sondes
- stacked flights along track to address horizontal variability issues
- validation of strong CO variability
- ozone columns from CAFS